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Parallel Conducting Circular Cylinders
by
R. V. Row

Abstract

The problem of scattering of an incident cylindrical (or
plane) electromagnetic wave by an arbitrary array of perfectly
conducting paraliel circular cylinders 1s solved for the case
of the electric vector parallel to the axes of the cylinders.
The use of a Green's theorem and application of the appropriate
boundary conditions results in a set of integral equations for
the unknown surface currents on each cylinder. These currents
m2y be expanded in a complex Fourier series and the set of
integral equations thus transformed into an infinite set of
linear algebraic equations in the unknown Fourier coefficients.
For a plane wave incident on a planar grating the connection
with Wessel's work is shown.

To simplify the computations the theory i1s specialized
to the case of two i1dentical cylinders. The solution of a
finite number of the linear equations 1is considered by exact
and aprroximate numerical methods. In additioa, neglect of
the coupling between different current modes yields a simple
formula for the scattered field in which the effect of coupling
is quite apparent.

For the two cylinders equidistant and far from the source
the scattered field is computed from these approximations for
cylinders as large as a wavelength in diameter and spacings
ranging from one to fcur wavelengths between centers. The
validity of the various approximations i1s determined by com-
parison with microwave measurements carried out at a wave-~
length of 3.185 ¢m in a parallel plate region. The theory
indicates significant departures from the predictions of the

independent scattering hypothesis ani these have been confirmed
experimentally.
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by
R. V. Row
Cruft Laboratory, Harvard University

Cambridge, Massachusetts

1. Introduction

The problem of multiple scattering of freely provagating
waves has interested numerous investigators for the past sixty
years. Various theoretical analyses of particular problems
have been based upon a solution of the scalar wave equation
subject to appropriate toundary conditions. The complexity
of these problems calis 1or simplifying assumptions either in
their initial formmnlation or in dealing with the final results.,
These assumptions are invarjably based upon consideration of
scatters which are el ther 1) very small compared tu s wave=
length, and may be closely spaced, or 2) spaced so that their
separation i1s much larger than their dimensions and a wave-
length, so that each scatter scatters independently. Actually
no results have been obtained previously for the case where the
dimensions of and spacings between scatters ars comparable to
a wavelength. It is for this latter case that coupling between

cattering elements should be large, and interesting departures
from the results of the independent scattering hypothesis are
expected.

This repcrt considers a combined theoretical and experimental

study of the scalar problem of scattering of an incident cylin-
drical electromagnetic wave by two infinitely long parallel,
identical, and perfectly conducting cylinders (for spacings and

.
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diameters comparable to a wavelength) .arranged with the incident
electric field parallel to their axes.

Luas swuvavn presents an historical introduction to the
scalar multiple scattering problem. The two succeeding sections
introduce the specific problem above ip more general terms by
considering the scattering by an arbitrary array of any number
of such perfectly conducting cylinders of arbitrary dlameters.
By specilalization to the case of scattering of a plane incident H
wave by a planar grating of indentical cylinders the connection !
with another grating theory is shown.

The complexity of the theory for the infinite grating and
line source, which would be necessary to take account of experi-
mental conditions, is so great as to preclude any calculations
being based on this theory, except for the case of very large
spacing between cylinders. For this reason the theory 1is further
specialized in Sectlon 4 -to the case of a line source and two
identical cylinders. Some of the conseguences of this theory
are considered and methods of obtaining numerical results to
check with fleld measurements are discussed.

Although the nroblem of diffraction by a grating of wires has
recelved considerable attention in the literature dating back to
the turn of tha century, 1,2,3 there remsin certaln aspects which
have not been satisfactorily investigated, namely, the efrects of
the size of the cylinders on mutual effects and the use of a line
source of excitation in place of the usual plane wave. Considera-
tion of coupling effects between scatters i1s of fundamental physi-
cal interest, whereas the use of a line source of excitation 1is
an attempt to bring the theoretical assumptions into closer ap-
proximation with feasible experimental arrangements. At best, as
was seen in Technical Report No. 153, one may obtain experimentally
various approximations to the elusive and unnatural plane wave.
However, if the object of diffraction measurement is to correlate
the experimental data with a theoretical model assuming plane-
wave excitation, then one 1s restricted to the study of relatively
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small centers of scattering, and for simplicity it 1is best to
use a line source.*

A recent set of measurements by Groves? cn the transmissicn

properties of parallel wire grids using a point source indicated
considerable disagreement with the theoretical results of Wessels
based on plane-wave incidence. This disagreement is attributed

by Groves to the use of a point source and clearly indicates that

the existing theory does not give accurate correlation with experi-
ment,

A perusal of the literature on scattering from several obstacles
reveals that theoretical work on problems of this type has been
l1imited chiefly to cases where the field quantities involved are
essentially scalar in nature. Such an approach to the prcblems
of multiple scattering while not valid for the most general cases
of electromagnetic scattering nevertheless sheds a good deal of
light cn the essentially unique properties of these problems which
may be attributed to mutual coupling.

Of all possible configurations of multiple scatters that of
the infinite diffraction grating made up of a planar array of
parallel identical circular cylinders or strips has received the
greatest attention. The reasons for ihies concentration of effort
are fairly obvious and are briefly stated here., Firstly, the
vector wave equation for the electromagnetic field may be separated
into two independent scalar wave equations which may then be solved
separately. Secondly; with plane-wave excitation the total field
exhibits a periodic nature so that the resulting theoretical
expression for the field may be conveniently expressed in simple form
enabling the effects of mutual coupling and size of scatterer to

The problem of diffraction of a spherical wave by a cylinder

has been solved by P. Oberhettinger (see Annalen der Physik (5)
43, 136-160 (1943§) and the correSponding problem with a con=-
ducting wedge replacing the cylinder bg Carslaw (loc. cit.)
Proc. London Math., Soc., 17: 121 {1899) However, in both
cases the expressions for the resulting field reduce to relatively
simple form only in the far zone.
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be more readily understood than with a finite grating or any other
type of excitation.

Recent papers by Twersky,6 Shmoys7 and Groves4 give a

fairly complete set of references to the literature on this and
related problems. These sources have been useful to the writerirn
evaluating the advantages and drawbacks of the various theoriles
on the grating of parallel wires and in deciding how to formulate
a theory which takes into account both coupling and a line source
of primary excitation. It 1s therefore timely to give at this
juncture a critical evaluation of the work done on this problem
to date.

The simplest assumption that can be made in any multiple
scattering problem is that all the obstacles scatter independently
This idea goes back at least as far as Rayleigh98 who first em-
ployed it in his theory of the scattering of light by small particles
in the sky,* although a possible earlier source of this idea 1s
to be found in Thomas Young's9 theory of optical diffraction. The
usual theory for the optical diffraction grating is based on this
simplification and the results of such an anslysis predict accurately
the angular position of the various spectral orders. However,
lood10 observed the phenomenon of almost discontinuous changes in
the intensity of some lower-order spectra as a speculum metal
grating was rotated so as to change the angle of incidence. To
explain this effect Rayleigh3 found it necessary to take account
of mutual interaction effects between elements of the grating.

His recognition of this fact started a tide of investigation in
the diffraction grating which 1is stiil active. Apart from J. J.

*In measuring the diffraction from two parallel identical conducting
cylinders, R. D. Kodis (see Cruft Lab. Progress Report Nos. 18 and
19, Harvard University (1951)) found that even for cylinders a
wavelength in dlameter the independent scattering hypothezis gives
reasonable predictions of the trend of near zone fleld measurements
for cylinders spaced a: closely as & wavelengths between centers.
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- Thompson's1 attempt* to solve the problem of reflection and
| transmission of an electromagnetic wave by a grating of closely
“ spaced wires Lamb2 gave the 1arst clear theoretical solution valigd
for small wires and close spacing by referring to the analogous
I static potential problem. His results received ewperimental con-
| firmation at the hands of Shaefer and Laugwitzll who employed
| decimeter electromagnetic waves from a Hertzian(Spark) oscillator.,
Ignatowsky12 was the first to develop a general theory of
scattering from an infinite grating of idsntical elements using a
formal solution of Maxwell's field equations satisfying the appro-
priate boundary conditions. He expressed the total field as a
superposition of the incident field and an integral over the
‘ surface of each element in the grating (without specifying any
particular shape of grating element). Because of the periodic na- ; 8
- ture of the boundary conditions he expands the total fielid in a series
of plane waves analogous to the propagating and evanescent modes in a
= waveguide. (The waveguide point of view in treating diffraction
gratings has been developed quite recently in a number of papers
by Marcuvitz,13 lliles,14 and ShmoysjB* The formal process of ‘
satisfying the boundary conditions leads to a set of equations for 1
the mode coefficlients which may be expressed in a neat form involving -
a number of sirgle integrals over the surface of a grating elemenrt.
Due, hovever, to the cumbersome notation used, and Ignatowsky's
failure to apply the results of his analysis to ary specific grating

B r———

Fourier series of the same period as the grating spacing, an idee
developed apparently independently by Ignatowsky twenty years
later. However, Thompson's use of the electromagnetic boundary
conditions in determining the Fourier coefficients is not clear
and his results were discarded in favor of Lamb's by the experi-
menters Shaefer and Laugwitz.

**Shmoys ' recently published paper (see ref. 27) gives a variational
nethod for calculating the mode coefficients in an analysis
essentielly the same as Ignatowsky's.
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problems, his very general results have been ignored by later
workers in favor of a simpler approach to their particular problems.

Shaefer and Reiche15 seem to be the first to have exparded
the scattered field from an array (of circular cylinders) in a
series of Hankel functions, although the ldea of expanding the
field scattered from a single cylinder in such a series had been
used earlier by Seitz.l

They neglect mutual coupling (i.e., they assume grating spacing
much greater than a wavelength) and solve for tie coefficients in
the seriles by applying the electromagnetic boundary conditions.
Their chief interest in the analysis is to determine the effect
of the material of the grating elements on the diffraction effects.
To first order,at least, they show that the location of the far-
zone minima is independent of the grating material. Their analysis
of the diffraction grating i1s more realistic than previous analyses
in that they consider the effect of a finite mimber of elements in
the grating and find, as might be expected, that the scattered field
is subject to significant amplitude changes from that expected for
the case of the infinite grating. Their paper contains no numerical
computations to show these effects graphically or otherwise.

Concurrently with Ignatowsky, Zaviska17 developed an analysis
of diffraction from an arbitrary array of parallel cylinders by
expanding the scattered field in a series of Hankel functions
representing cylindrical waves radiating from each cylinder. By
using various expansion theorems for Bessel functions he matched
the fields to the boundary conditions at the surface of each cylinder.
This procedure resulted in an infinite number of linear algebraic
equations in an infinite number of unknowns which in principle could
be solved for the coefficient of each cylincrical wave in the ori-
ginal expansion of the scattered field. He suggests a method of
iteration for solving these equations and gives an approximate
method for determining the effect of the wire radius on the fleld;
in essence this is a criterion for specifying what 1s meant when
one speaks of "small" wires. Zaviska applied this interesting theory

stn Acana
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to an array of twc very thin wires to explain the experimental
results of scattering measurements from a thin dielectric cylin-
- der made by Shaefer and Grossmann.18 However, he did not apply
his method to the study of scattering By wires of cross-sectional
dimensions and spacing comparable to wavelength where one may
expect irteresting departures from the simple independent- }

scattering hypothesis.

Recently Wessels developed an analysis of scattering from an
array of carallel filamentary conductors based on deriving the
scattered field from a vector potential derivable from the currents
in the wires of the grating. He gives simple expressions for the 41
transmission coefficient of the grating based on plane-wave incidence, |
his results being valid for small wires and closely spaced grating ‘
elements. Wessel's theory has received excellent experimental con-

: firmation at the hands of Esau, Ahrens and Kebbel.19
20

Wl e Rl

equation directly in plane polar coordinates without the inter- i
mediate step of the vectcr potential. He also considered the problem
of two parallel gratings, and showed an interesting resonance in

the transmission coefficient as the spacing between the gratings

is changed. As with Wessel, his results are limited to the in-
finite grating of small wires and plane-wave incidence.

Franz™~ has rederived Wessel's results by solving the wave ;*q

Within the last few years Miles14 and Shmoys7 have considered
the grating protlem using a variational method. 1In essence they
Fourier-analyze the total field to reduce the complexity of the
mathematical problem to a stage which requires only the solution
of a single integral equation, resulting from the requirements
imposed by the electromagnetic Boundary conditions. This procedure

¢ leaves a series of plane-wave mode-coefficientes as the unknowns
to be determined, and at this point in the analysis they introduce
' the well-known variational method of Levine and Schwinger to ex-
press the quantities of physical interest in a fcrm which permits
a simpler computational problem than that resulting in Tgnatowsky's
paper. However_ 6 the authors do not consider how they will determine
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the necessary current distributions on their scattering elements .
for use as trial functions in the variational formulas. MNiles

paper gives results which yield the transmission coefficient of -
the grating as a unit for plane-wave incidence, while Shmoys'

results, in princirle at least, aliow the scattered field to be

cemputed everywhere, although as with Ignatowsky's earlier analysis,

this requires the summing of a series of modes; the rate of con-

vergence depending on the degree of coupling between grating elements.
Marcuvitz 1s referred to in Shmoys'7 and Grovei4 papers as having
considered grating problems from an integral equation point of view

and also as having applied variational techniques to the computation

of their far-zone transmission properties. Unfortunately, his work

does not appear 1n any of the regular journals or in any readily

accessible place in the literature.

Twersky6 considers the protlem of diffraction by arbitrary *
array of parallel cylinders and accounts for coupling by a system
of "multiply scattered™ waves. In this novel analysis the first-
order wave is that resulting from the scattering of the incident
field by éach cylinder acting independently, the second order takes
into account the rescattering of these first-order waves by each
scatterer, and so on to higher order scattered waves. This formu-
lation is chiefly useful when the scatterers are relatively 1loosely
coupled so that only the first few orders need be computed. In
a recent paper, Twersky21 applies this method of analysis to the
problem of the giffraction grating of small wires and explains the
‘anomalies” noticed by Wood. For the case of the infinite array
of small cylinders and plane-wave incidence the results may be put
into the same form used by Ignatowsky and Zaziska.*

- - e e @ e -

*Zaviska's work, although applicable to the problem of the finite

grating has never been extended in this way. The form of the e
analysis to be presented in the next section is similar to Zaviska's

though here the use of a Green's function formulation gives a clearer
physical insight into the problem and leads naturally to a final

form of the scattered field expression identical with Zaviska's.
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Except for the work of Shaefer and Reichels in 1911 no
one nas considered the problem of diffraction by a finite array
of cylinders. As has been mentioned, their analysis neglected the
coupling between grating elements so that for purposes of closely
correlating theory and the posgsibilities of practical measurements
there is need of an analysis which takes into account this coupling
in a finite grating as well as the point {or line) nature of experi-
mentally feasible sources of electromagnetic waves. It 1s the
purpose of the succeeding section to develop such an analysis,which
will relate closely to the physical situation of currents on the
surface of the scattering elements.

2, Outlipne of the Theory,

In the following only scalar scattering by circular cylinders
is considered since this results in a mathematically tractable
problem although from Lamb's2 work on the grating of closely spaced
small wires or strips it is expected that for small scattering
elements the precise form of their boundary is secondary in deter-
mining their scattered field in directions away from the source
of radiation. The theory assumes a current distribution on the
surface of each perfectly conducting cylinder; the total fleld is
then calculated through the use of one of Green's theorems. Appli-
cation of the boundary conditions gives a series of integral equa-
tions for the current on each cylinder which takes into account
arbitrary excitaticn snd coupling between all the elements. The
unknown surface current on each cylinder is then expanded in a
complex Fourier series whose coefficients may be evaluated using
the usual orthogonality property of the trigonometric functions.
The resulting system of linear algebraic equations in the unknown
coefficients may be written as an infinite matrix equation. The
probiem then remaining is to solve this system of linear algebdbraic
equations. Various methods of numerical soluticn may be used,
depending on the number of terms and accuracy required in the final
result. For small cylinders the terms off the principal diagonal
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are small, and the meaning of the term "small" may te evaluated
readily in estimating the importance of higher-mode currents
contributing to the scattered field. The results obtained at

this point in the analysis are similar in form to those of Zaviskal’
who started by assuming a spectrum of scattered cylindrical waves
and determining the spectral amplitudes from a consideration of

the boundary conditions. There is aiso a formal analogy to the
results of Twersky's6’ 21 multiple-order scattering analysis.

This theory 1s readily specialized to the case of a plane
wave incident on an infinite planar grating of small wires. If
the effects of higher-order current modes are neglected, this
result becomes identical with that of Wessels who considered a
uniform current distribution on the surface of the wires in his
analysis.

3. Geperal Theory

Figure 1-1 shows the general arrangement of line source and
3cattering cylinders. The axes of the cylinders and line source
are all parallel to the z-axis so that all relevant electromagnetic
field quantities may be derived from the single scalar quantity
Ez, the electric field intensity in the z-direction. For con-
venlence in notation ,define

Ez(I,Y) = *(X,Y) U

Then from Maxwell's equations 1t is well known that in a source
free region the scalar ¥ must satisfy the wave equation

(v2x,y + K2 ¥(x,y) = 0

9

subject to the boundary condition, that ¥ vanish on all perfectly
conducting surfaces parallel to the z-direction. 1In iddition, of
course, the usual restriction on the form of the sclution at in-

finity must be satisfied. The conventional harmonic time depend-

ence e'i“"t i1s used throughout with K = 2n/A where A is the free-

space wavelength.

- toreri ot i
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If a Green's function (G(x,y;x',y') is delined as a solution
of the inhcmogeneous wave equation

2
X,y

and substituted into Green's scalar identity

/ewzc-evand ' = f w%% -G%%)dC'.

The result

i - © + K2)/6(x,y;5',y') = =b(x-x")8(y-y')

v (x,y) = f (Ggltn -¥ ?n)dc'

i1s readily found, where the line integral is taken over a closed
contour containing the source and all the cylinders. By imposing
the boundary condition ¥= 0 on the surfaces of all cylinders and
raking the convenient definition

s g—% = 24"'5' In(ﬁn) 9

n

on nth cylinder

where In(ﬂn) may be considered as the surface current on the nth
cylinder, the previous result can be reduced to

W) = ¥1%(T) + E j" 1,(8)6(T,T")ap, (1)
n o]

for r' on the surface of the cylinders, vector notation being used ;i
here as a convenience, and *inc(r) i1s the field that would exist at
the point r if no scattering obstacles were present.

The application of the boundary condition ¥(r) = O when r is
on the surface of each cylinder leads to the following set of in-
tegral eguations:

2
winc(-r') s - % E In(ﬁn)G(?g;')dﬂn

T on cylinders n_ Jo T,T' on
¢ylinders
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tliecre 1s one such equation for each cylinder. Before proceeding .
to solve the unknown current distribution In(pn) on each cylinder,

it 1s necessary to chocse the appropriate Green's function. It 1is

well known* that the two-dimensional Green's function which rep-

resents a radiating cylindrical wave in free space is

- - _ i (1 -
o(F,71) = 1 B (x|7-) (2)
where H(l)(xlr T'|) 1s the Hankel function of order zero.

The final fom of the set of integral equations for the un-
known surface-current distribution on each cylinder 1s thus

2n
¥ine) R [ 1, (8 B (K T g,
T on cylinder n _17,?' on
cylinders )
(3) .

The problem now is to find a set of In(ﬁn) which satisfy this
integral equation. One method of solving such an integral equation
is to expand the unknown function in a complete set of orthonormal
functions appropriate to the geometry of the particular problem and
then to determine the resulting unknown coefficients. PFollowing
this method a natural choice here is to expand the surface current
on each cylinder in the complex Pourier series

1sg
In(ﬂn) = E a qe D

S==m

Thus the solution of the integral equation is reduced to the prohlem
of determining the a ge By assuming the 1nx~n) to have a suffi-
ciently regular behavior, and by using the orthog-nal properties of

*See for example Morse and Feshbach, "Methods of Theoretical
Physics,” (MIT notes) p. 155.




—— E e I 1 . o o =
e = 4 - ENe g i PEC i - - i mp——— o e ———
ST WP M2 WP OT NN X > B - rETN— = ;

TR170 -13- '
isg
) the set of functions e , 1t 1s possible to reduce the problem
of finding the arg to the solution of an infinite set of linear
inhomogeneous simultaneous algebraic equations in which the a
are the unknowns.

n

ns

-1t4
If the mth integral equation is multiplied by e B(t ts

any integer including zero) and both sides are integrated with
respect to ﬁm from O to 2nm, it follows that
-itg = :
e m dﬁm

f" Uaad €
) on mth cylinder Li

" ZZ[ f S e T

n ] (o} (o} r on mth
- cylinder '

-
r

';' on mth and
nth cylinder

Asswming that the order of integration and summation may be inter- 4
changed, and further introducing the notation

Kemns = B f f e 5 (kT ]) N e ag, ag,
o Yo X on mth cylinder
r! on mth and (4)
nth cylinder
and il ine, = -1tg,
r on mth cylinder

the equation for ang can be written

) Yem = = Z : z : Kimns®na (5)
n s

where t ranges over the same integers as s, and n ranges over all 3
the cylirders. !
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Once the source excitation *}nc(;) is specified the statement
of the problem is complete and there remains the analytical problem

of solving the linear equations (5) for the a, ..

The incident field characteristic of a uniform line source is

hla\
VT
where A 1s an arbitrary complex constant. With this choice of

excitation the integrals Ytm and Ktmns as evaluated in Appendix
B are

= aRS(RIT)

L -1t(e_+m)
Yoy = 2AT (Ka )ESY)(KIT [)e ~ D

(1
Hs )(Kam) 5 st

-.z_‘l
K o %; T.(Ka_) r=r! on mth cylinder
tmns t'\%%m (6)
(1), 1= = -itunm+1sanm
Js(xan)ﬂt-s(xlbm'qJ)e T,T' om
different
cylinders
I - -—t I
For any given values cf the parameters K, a,, €  and | b ~b |, v¢p

and Ktmns may be evaluated using existing tables of the Bessel
functions. PFinally, the total field from the array may be calcu-
lated readily using (1). Thus

isg
yscatt =8%-T E Z a,q 79 n Hgl)(xpn)dﬁn
n ] (o]

where as in Pig. 1

Pm ='V/R§ + a2 - 2R acos(p -6 )

After substituting this last expression for Pm in the formula
above, the integration may be performed through use of the ad-
dition theorem for Bessel functions* to give

*See Appendix A.

i d




TR170 =15~

isg
¢t°t(x,y) - *inc(x,y) +:1£ E ’ E ‘ anSJS(Kan)Hgl)(mn)e n

6
Here the reader familiar with Twersky's multiple scattering
analysis will notice a formal analogy between equation (/) and his
formula for the scattered field.

At this point it is convenient to show the connection of this
theory to the work of Wessel on the infinite planar grating of
cylindrical wires.

As the source 1s moved off to infinity, Odr—)go

o' = am{DITh ~ A-\/ é_ e
0,

iKlbm| cos(0, - a )

o]
and
ne = = aw(L) el =1y 2
vreE | =Pt “/"Kro .
r on mth 11y
cylinder  1Kr +iK|b |cos(8 -a  )+iKa cos(8 -g )- S

e

If A 1s chosen to make

winc(;) - e iKImecosiobwbm)+1xamcos(9°-¢m )

T on mth cylinder

corresponding to a plane wave incident from the direction 90 then
1X|D_| cos(® _~a_ )-1t(e_ - T
- m o ~om o 2
-
and for a planar array of equally spaced identical cylinders lbml
= mb (b is the distance between centers of adjacent cylinders),

Jao form>» O

= +
Tom (SopE form <0

am—a
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From symmetry it is apparent that all the cylinders have the same
current distribution except for the phase factor Kmb cos(Ooqzo).
Thus

e

iXmdb cos(Go q:o)

&ms = e al (9)

3
1
i
“08
where aés is the sth Fourier coefficient on the zeroth cylinder in l

the array. Thus, for this special case, equation (5) may be written
as follows:

-1t(0 - &
4ie o 2) =

-1ta x, = 1K(n-m)bcos(@ _-a_) 1im
e ° > o el °7 (Ka)E{L) (K |n-u] b)

n#m (10)

This equation is valid for all m. 1In particular, as stated above
in (9), 1t 1s only necessary to calculate the current on the zeroth
cylinder in order to know it on every cylinder. Thus, the system
of equations for m = 0 becomes

~18(e- B

4le = Ht(;l)(Ka)ac',t

~ita S ; 1Knbcos(© ) isa
+ e ° n; 3 > alee oo e °Js(xa)n,£};(x|n|b)
0

As t ranges through ali the integers from :c0to +m an
infinite number of equations in the infinite set of unknowns a!

os

is generated. 1In principle, this set of equations could be solved .
for the aés. However, it 1s not proposed to do so at present.

For small Ka and b >> a it may be seen from the behavior of the .

Bessel and Hankel functions involved thst the dominant terms in
the right-hand side of the previous expression are those with
t = s =0. Thus equation {10) becomes
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00

a1 = {Hf)l)(l(a) + > s KD (Kinibe
n=<00
nfo0

This is identical with the equation for the currentngn the zeroth

cylinder obtained by Wessel. Tables of the series Jo(nKb) and

E Yo(nKb) corresponding to normal incidence n=
have been computed by Ignatowsky 12 and Wessel. 5

1Knbcos(90-ao) '
800 .

As far as coupling effects and their dependence on cylinder
radius and spacing are concerned, the mode coefficients could be
computed with a large amount of labor for thre case of an infinite
planar grating using equation (10). However, when it comes to
comparing the theoretical results for the scattered field to experi-
mental results, it is not feasible to use plane-wave excitation,
and the system of equations for the mode coefficients for a line
gsource of excitation and the infinite grating are exceedingly
complex. Hence, it is expadient to consider the simplest con-
figuration for which mutual coupling effects may be calculated
with a reasonable amount of labor. For these reasons the problem
of scattering of a ¢ylindrical wave by two identical cylinders has
been chcsen as an example to test the general theory.

4, Theory Specialized to tre Case of
Two Identical Cylinders

Arbitrary Incidence (Plane-wave excitation)

In view of the complexity of the general theory developed
in the preceding section it is expedient to apply the theory to
a simple nroblem which illustrates the effects of both the size
and the separation of the elements in determining mutual inter-
action. The simplest configuration for such a study appears to
be that of two identical cylinders arranged as in Fig. 2. To

s s TR 1 A, Qo . i L N
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simplify further the equations determining the current distribution
coefficients 8ng the incident field 1is assumed to be a plane wave,

although for the case of normal incidence the equations will later .
be written down for a line source of primary excitation, since it

is for this type of excitation that experimental measurements will

be made.

Using the notation in Section 4, and starting from the general
forms,Eq. 6, for the coefficientsy, and K, with the substi-
tutions 6, = ,=0, @5y = n/2 + @ anday_; = -("m/2 - ©) as indicated
in Pig. 2,the following expregsions are obtained for plane-wave

incidence:
¥ 1Kbsin® + it g
(11)

(1)
Bs (Ka) 83t

tmns 2 (1) -it(e + -) + 1s(e + 2)
J (Ka)H (2Kb) e

The upper sign in the exponents is used for m = 1 and the lower

sign for m = =1. When the above expressions for Ytm and xtmns

are substituted in equation (5), the linear equation for the

unknowns a are form = 1:

ns
-it(e - )
B (Raday o + e 215 (xa){l) (2kvya;
’ 2 (12)
0.9] -18% 189H(1) -159 ( ) ]
* :E e Tg(Ka) [° t-s(2KDla_y o * Heeg(2KblaLy g
s=1

-1Kbsin® + it g
= 4ie

-1t(0 + 3)

Hél)(l{a)a_1 + te Jo(Ka)Hil)(ZKb)alvo +
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is 3 (1)
el , 1s0.,(1) -150 1 3
+ e 7 (Ka) [ Hy ((2Kb)ay S Ht+s(2Kb)al,-s
s=
1Kbsine + it% (13)
= 41ie

The system of equations (12) and (13) may be studied conveniently
if they are written out 1ii: detail for a number of values of the
index t, and then gathered together in matrix form. For con-
venience, the matrix form is K . a = 41e+1xb31n9k where the

square matrix K is the matrix of coefficients of the unknowns a,1 g

on the left-hand side of (12) and (13), a is the column matrix

of the unknowns a+l gs and A is the column matrix of the elements
el¥™2 41 the right-Rand side of (12) and (13). This procedure

has been followed in setting up the matrix equation shown in Fig. 2
where the indices t and s runfrom -2 to +2.

In writing a finite matrix equation in place of the infinite
matrix equation required by the rigorous theory the effect of
neglecting all equations with|t|and\s|ranging from a given
integer to infinity (in this case the equations with t and‘s
ranging from * 3 to *+ ® have been neglected) mast te determined.
In general it is difficult to justify rigorously the neglect of
'higher-order' equations. However, in this particular problem
the known behavior of the cylinder functions which comprise the
coefficients permits a heuristic justification of the neglect
of such 'higher-order' equations. This justification is treated
in detail later and for the present the validity of the solutions
obtained from the finite matrix equation will be &assumed.

For a spacing that is much larger than the cylinder radius,
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it is apparent from the behavior of the coefficients* in the i
matrix equation aswritten in Fig. 3 thet the predominant ele- 2
ments in the K matrix lie along the two rrincipal dlagonals, tkat :
is,the diagonals running from the upper-left-hand to the lower~

right-hand corners, and from the upper-right-hand to the lower-

left-hand corners. The degree of approximation involved in the

use of these terms alone in solving the finite system of equations

will be discussed later. For present purposes useful information

about the behavior of the far-zone field may be derived from the

matrix equation by assuming this approximation to be good. 1In

essence this assumption means that the current distribution in

each mode (characterized by the indices +s) is independent of the

current distribution in other modes.

For example, from the matrix equation in Fig. 3 the zeroth-
mode coef~icients 81 0 will be determined from the pair of equations
-9

*For small Ka
~ n
I (k) = B2y &

H{1)(Ka) ¥ - 1ln-d (&))" for n # 0

12

-2 4 21 =
TTAYK& for n 0

(1) x> - 37 - 4
mae) 2/ e

for X¥b 5> n

and for large Kb

These expressions are useful in studying the behavior of the K N
matrix elements for small Ka and large Ko. A detailed discussion
of the bshavior of the elements as depends on order n, and the *

magnitudes of Ka and Kb will be found later.
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(1) (1) = -1Kbsin®
B, (Ka)al’o + J,(Ka)H (2Kb)a_190 = 41e

(1) (1) - iKbsin®
Jo(Ka)Ho (2Kb)a1’o + Ho (Ka)alqo 4ie

The solutions to these are,
#1,0
- 44
2 2
2.1,0] 81 (Ra) - 72(xa)R{M)" (2K0)

Hél)(xa)e-iKbSino_ Jo(Ka)Hgl)(ZKb)eixb81n°

Hgl)(xa)eiKbsinO_ Jo(Ka)Hgl)(sz)e‘ibeing

Similar expressions are obtained for the other-mode coefficients
841 +g9 and in general they may be written in the following form:
-9

a

i p - 4ie 2 S
| S S S )
E ) - Jg Ka)H2s )

( - e
Hgl)(KA)e 1Kb31ng_Js(xa)Hé§)(2Kb)e iKbsing~-21s8

> (14)
-iKbsine-21s06

A{) (Ka)eKPS1M0_; (xa)m{l) (2K0)e
.

Equation (7) (repeated here for convenience)

‘j Z Z : isg
‘thOt(x&;Y) = \b‘inc(xoy) + % ansjs(xa)ngl)(mn)e n (15)
n e '
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can be used to calculate the total field. However,the terms

(1) 1sﬁn
Hg (KRn)e in the summation for the scattered field are
comnlicated functions of the position of the point of observa-
tion, so for simplicity the point of observation will be taken
in the far zone, along the line of the incident wave direction.
This means that g, ~ 0, and R;; ~ R  * bsin@, so tne well known
asymptotic form of the Hankel Tunctions for argument KRO much
greater than the order s glves,

-in/4
1 ~ 8 ./ A +1Kbsin0
Hg )(Kﬁil) - w 'ﬁ; e - 2.0

With these simplifications the part of equation (15) representing
the scattered field becomes

iKR_-in/4
o T/ A E +1Kbsin®
*scatt ﬁa% . R e— (anoJo(KA)

o]

n=t1
-isn/2 .
+ ; e Js(xa)(an,s + 2 -9)
s=]
From (14) the terms (an s+an_s) may be combined (for n = %+ 1) as,
9
'ii—%1|s‘ (1) +1Kbsine
a +a e (H sin
+1,8 “+1,-8 -l 19: 4 (Ka)e

3
(1 2 (1),
B{D (Ra)- 52(xa)E{Y) " (2KD)

= Js(Ka)Hgi)(ZKb)QOSBsG e 1Kbsin® )

Substitution of this last expression in equation (15) results
in the following expression for “he scattered field,

A aecdidBiia 40




I PRRRRRI RSy fe T &8 . ~ - - AU IR g P < o T —

TR170 -23=
iKR_-in/4 &P
scatt(p y ~ _ V2 e S 1/g_ﬁ Jg(Ka) 5 i
¥ o) m R, s (12 20p. yp(1)?
. S=0 Hy™ (ka)-Js(Ka)H28 (2Kt)
(Hs(l)(Ka)-Js(Ka)Héé)(2Kb)c03259cos(2ﬁbsin9)) (16)

From this result it is apparent that as the spacing between
the cylinders becomes very large the scattered field shows negli-
gible dependence on the angle of orientation of the plane of the
cylinders in the incident wave-front. However, for moderately
close coupling it is interesting to see the effect of orienta-

b tion on the scattered field.

L A comparison between the results of the above analysis and h
: near-zone field measurements described in Section 5§ for normal
g incidence with 2b/A = 1 shows that the theory which neglects i
the off-diagonal terms in the matrix equation gives reasonable e
) results for Ka as large as 1.5. Therefore equation (16) has ﬁ
been used to calculate the far-zone form of the total field
from the relation ¥WO' = 1N¢ 4+ ¢3¢att .5 o runction of the
argle 6. For convanience the factor i 38 has been chosen equal

;

b o :
i to 1/2, although for actual observation 18 the far zone,Ro/k %
S

F

must be large and the above factor quite small. In Fig. 4 tte
amplitude of ¥°°° 1s(plotted as |Bs_ . ) shown as a function

of ® for two cylinder radii corresponding to Ka = 0.10 and ;
Ka = 1.50 with the spacing 2b/A = 1.0. 1In addition, the same J 8
quantity 1s plotted for the case where coupling is neglected. _#;

TS PR EE L

From these results it is apparent that coupling effects
’ (as evidenced by the difference between the curves with and ;
4 B without coupling) are considerabdbly less dependent on the angle i‘
of orientation for the smaller than for the larger cylinder. ’%
In the case of the larger cylinder the coupling effects are
slightly larger fcr normal incidence (i.e., ® = 0) than for |
any other angle. This 1s not true for the small cylinder, but iﬁ
at least it is safe to assume that courling effects are about b
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as large at normal incidence as for any other angle of orienta-
tion for cylinders with Ka less than 1.5. The analvs’s presented
above 1is only strictly true for spacing much larger th..: the
radius., How much larger 1is a rather difficult questjon to answer,
since 1t requires in effect the solution of the complete matrix
equation, or an appeal to expsriment. For the case discussed
above b/a equaled approximately 2.1; but it is dangerous to use
this ratio as a criterion for the range of validity of the approxi-
mation, since the off-diagonal elements in the K matrix are not
related to the diagonal elements through any such simple algebraic
function as BYa. Therefore tha question of the useful range of
approximation will be investigated experimentally in Section 5.
Suffice it to say here that provided b is kept large enough the
predictions of this theory should be in reasonable agreement

with the actual situation for cylinders with Ka even greater than
1.5, It seems reasonable to assume that for cylinders with Ka
even larger than 1.9 the effects of coupling should be about as
large for normal incidence as for any other angles of orientation
showing significant departures from the results bBased on the
assumption of independent scattering. For this reason, and the
additional fact that it would be exceedingly laborious to solve
the matrix equation ty numerical method for arbitrary orienta-
tion and cylinders with tighter coupling than assumed in the

above example, the remainder or this chapter and succeeding chapters
will consider only the case of normal incidence corresponding

to 8 equal to zero.

Normal Incidence

For normal incidence the effect of substituting a line
source(or cylindrical wave) in place of the plane-wave excita-
tion assumed previously presents no special difficulties be-
cause, as 1is apparent from the geometrical arrangement of the

source and cylinders shown in Fig. 5, both cylinders are ex-
cited symmetrically. The system of equations (13) for the
unknowns a,, S for m = -1 may be written

-
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F
(1) -itn/2 (1)
He (Ka)a_l’t te J,(Ka)H (2Kb)al’o

A g eis"/st(Ka) ‘%(1)(2Kb)al
s-

1
-1t(mo_,)
+ Hgfg(sz)al’s]j= 418{1 (x4/r2+ b2)e -1

(17)
= =1t(n+0 )
where the term 418%1)(K‘Vr£+b2)e -1 appearing on the right-

hand-side differs from that in (12) because of the use of the Tem
(see Eq. (6)) proper for line source excitation, rather than that '8
for a plane wave,

If the_angle O is set equal to zero in the matrix equat‘on .l
Ko+ as= 419+1Kb51n°x of Fig. 3 it 1s apparent that the equations :
furm.1and m = -1 are identical except that a -1,s must be re-
placed by a; _ wherever it appears. This of course reduces by half ‘ﬂ
the number of unknown coefficlients to be determined, and is to be l
expected from the symmetry of the source and cylinders.,

It 1s evident 9
1,(6)) = I_j(-6)) |

where I,(#;) and Iml("l) are the gsurface currents at mirror f
image points on the upper and lower cylinders. If the Fourier

representation
isln
I,(sp) =z : 3ns®

is substituted into the above symmetry relationship the following
identity 1s readily established,

al,s = a-1,-5

for all s,

The system of equations relating the unknowns obtained from
(7) by using this statement of symmetry and allowing t to range

through all positive and negative integers may be conveniently
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summarized in matrix form as,

Koa’417\

where K is a square matrix, whose elements are the coefficients

of the 8144 and 4iA is the matrix of elements on the right-hand-
side of (T7). This matrix equation has been written out explicitly
in Fig. 6 for the index t ranging from =3 to 43,

The rigorous solution of the problem requires the solution
of an infinite matrix equation. BRxcept for certain special cases
(in this problem, corresponding to no coupling, i.e. Kb -—>w)
the sclution to such an infinite matrix eguation is not immediately
obvious, and indeed a simple solution may not exist at all.

An _Approximation

The best that can be done by way of a solution is to solve
by numerical means a finite number of the equations represented
by (17). This procedure may be justified qualitatively in the
following way. Firstly the elements on the principal diagonal
in the K matrix of Fig. 6 are Bt(l)(ka) + Jl(Ka)Bg%)(ZKb)o (For
t a negative integer multiply this expression by ot .) For
large order (t being taken positive) t and the arguments Ka and
2Kb less than the order, use of the representations;‘

Jy(t sech a) o ot t(tanho-q)

Y, (t -sech a) 1/é"t catba
with the definition sech a= Ka/t or Kb/t gives
(1) (1)
Ay (Ka) + Jt(Ka)HEt (2Kb)

o 1 t(sech™! 5% - Vl-(zg) )

e.

Vortfi-2)”
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-1 Xa _+/_(Eas2
. t(sech % 1/1_({9-) )
~t(seon™ (8 ~V1-BI)[ y4(geenl B _Vi-&2
]

+
Vot Vit

-PieZt:(sech.:L % - 1-(%)2)]

For s >> Kb, Ka; and Ka, Kb >> 1, several approximations may
be made and this formula simplified to

-1

=1 J2tt . 1 (2t @)t 18
1/55%‘{(23) iy ) (p) }' (18)

Thus the diagonal terms tend to become very large with
increasing crder. 1If the off-diagonal elements tend to become
very small with increasing order then the procedure of solving
only a finite number of the equations appears as reasonable,
This is indeed true as is readily seen from the fact that the
off-diagonal elements are of the form

Jg(Ka)H,_,(2Kb) (for s £ t)

and that for large s (also s >> Ka, 2Kb, and Ka, Kb >>1) this
combination behaves as

e e T

Thus for s much larger than ¢t this combination behaves essentially

as
Isl It
oo ® @

which tends to zero with increasing s. This argument indicates
that the approximation involved in choosing for solution only a
finite number of the equations and unknowns represented in the
infinite matrix equation 1s a very reasonable one.
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Granted that the approximation is good, how many, and
which equations should be chosen for soiution? Since the
problem of scattering by two cyliiiders must reduce to that of
scattering by a single cylinder in the limit of very large
spacing between cylinders; the first question is most readily
answered by using the simple well~known solution to the problem
of the scattering of a plane wave by an isolated cylinder. The
symmetry of the diagonal elements of the K matrix about the
element corresponding to t = s = 0 points to an obvious choice
of equations as those with t =0, #1, +2 . . - - #n, and un-
knowns with s ranging from -n to +n. The scattered field (for
the same orientation of the incident plane vave as in the two-
cylinder problem from an isolated cylinder‘22 may be put in the
form

= -18 _(Ka)g{1)
*scatt(rgb) - _z ; esisﬂsin 5, (Ka)e s 'Hg ’(Kr)cos sg
S

where

16 (Ka) jl, s =0
€ -

and -
\?, s #0

In the far zone the amplitude of Hgl)(xr) changes slowly with
increasing s and thus the change of amplitude of each term
corresponding to a change in index s is essentially propor-
tional to isin Ss(Ka)cos sbl e The term cos sp is one at
most and from the tables referred to above,zz_ it 1s seen that
sin 5,(Ka) tends to zero with increasing s, (for s greater than
a certain integer). Thus by reference to these tables it 1is
possible to pick out the greatest integer s for which any
significant contribution will be made to the summation for the
scattered field. This maximum integer may then be used as a
guide in deciding upon the number of equations to be solved

in the two-cylinder problem. Thus for Ka = 3.0 (2a/A ~ 1)

(1) &
B~ '(Ka) = -1C (Ka)e
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s = | o | 1| 2 | 3
pin 5 TKa)JE| 0.5880 |0.7222 [0.9496 [ 0.4577

a_| 5 | 6 |7
0.1426 | 0.02251 | 0.002094 | 0.000175

and s = 6 i1s the largest index giving an appreciable term in the
field summation. Hence in the twe-cylinder problem at least

é modes must be 30lved for corresponding to t = 0, *1, *+2, #3,

e o« o« o6, There i1s an enormous amount of labor* involved in
solving such a system of equations with complex coefficients;
however ,for a spacing of one wavelength between centers such a
system of equations has been solved exactly for the case

Ka = 1.253, and approximately for Ka = 2.0 and 2.5, for t rang-
ing tetween values determined by the above procedure.

Methods of solving such systems of equations on a desk
calculator are well known, and the relative merits of one
exact method of solution and one method of approximate solu-
tion are discussed briefly in Appendix B. 8uffice it to say
here that except for Ka < 1.30 the labor reguired to solve
such a system on a desk calculator limits somewhat the use-
fulness of the theory. That the solution of a ™block" out of
the matrix equation yields results in excellent agreement with
measurements may be readily appreciated by a glance at Fig. 9.
Here equation(l5)has been used to calculate the scattered field.

A Further Approximation

In view of the computational difficulties encountered in
solving a large number of linear algebraic equations with complex
coefficients it is desirable to have a simple approximation to
the solutions for the unknowns al,s’ so that some of the major
characteristics of the scattering by two cylinders may be more
readily seen. The simplest and only approximation that will be

T L D
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discussed 1s suggested by the fact that the diagonal elements
in the K matrix increase without bound with increasing t, and
at the same time the off-diagonal terms ternd to zero. Hence it
would seem reasonable to neglect completely all off-diagonal
terms in calculating the al g° A glance =t Fig. 6 should make
it apparent that in general it will be difficult to determine
in advance the success of this assumption in predicting measur-
able quantities from the relative amplitudes of the various
elements (diagonal and off-diagonal) in the K matrix because any
measurable quantities such as the surface-current distritution
or scattered field are derived by complicated summations in-
volving the unknowns al g° At this point, experiment will
prove to be a powerful companion tool to the theory and further
discussion along these lines will be found in Section 9.
Following then, 1s a presentation of the analytical results
derivable from the use of only the diagonal elements in the

K matrix.

Fror equation (17) the diagonal elements in a K matrix of any
order are obtained by using the symmetry relationship previously
derived, namely

81,6 " % -t 4

and selecting only the coefficients cf these unknowns from the
equation corresponding to each value of t (taking t = s for
convenience of notation). Thus for a line source
-186
41(-)%m ) (e +p%)e T

'8 ﬁrl)(xa) + 7 (xa)n(*) (2Kb)

(19)

The value for the °‘scattering coefficients! al g may be sub-
stituted into equation (7)to give the following approximate
expression for the scattered fiela.

“'—O:J
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¥3°att(p g) =

1s(¢ -8.)
.S 5"7 -’ JS(Ka)H(l)(KV 2062)R (KR e 1

(Ka) + 7 (xa)agl)(axb)

n=41 s=-0

In the 1imit as Kb and Kr —> o0, this expression (except for

an unimportant constant) is identical with Seitz's expression
for the field scattered by an isolated cylinder (provided the
summation over the cylinders is extended to one cylinder only).
Also as Kb—>ceach term in the series becomes that predicted
by the independent scattering hypothesis. PFor small cylinders
(i.e., small Ka) the Bessel and Hankel functions involving Ka
may be approximated by thelr power series representations to
give the following result for the scattered field, (in the case
that b >> a).

vooatt(r,g) ~

5> is(g_-0
2 2 (_1)8(&)8 l H(l)(x +b2)H(1)(KR )e 8 ¢ 1)
S==00
-2 gy 2 1 =10

- L!:%ll (é%;ij s #0

From this result it is easily seen that for srall cylinders the
major contribution to the scattered field comes from the mode
with s = 0., If KR Ir >> 1 the amplitude of the functions

(1) (xyEZ+p2 2 (1)?
Hy /(K¥r +b°) and H'“/(KR ) 1s approximately constant for
different s; hence the relative amplitudes of the zeroth and
first mode in the scattered field arc

1
2 log, (o= )

ana ()2

! whereyvy =1.7811 . . &

(20)
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and 0.50

H
!
i The following table compares these quantities for K = 0.25
| Ka Zeroth Order | 1st Order
]

f = (%)
it o B | 2

i 0.25 0.230 0.0156
| 0.50 0.238 0.0625

Thus for Ka < 0.25 only the zeroth mode need be considered,
and for Ka in the range 0.25 to 0.50 contributions from the
next mode begin to be appreciable. Thus (by neglecting
coupling) we have a simple criterion for defining the small
cylinder. In Fig. 9 the result of calculating the field at
a fixed point from the zeroth mode, or uniform surface-
current distribution (coupling taken into account) is plotted
as a function of the radius a, for a fixed spacing of one
wavelength between centers.

The diminishing effects of coupling on the coefficients
J‘(Ka)al 8 in (20) occurring in the summation of equation t
(19) as $ 1s increased may be seen in the following way. '
Assuming that the source and point of observation are both a
large distance from the cylinders, the contribution of each
mode in equation (20) is proportional to

Jq (Ka) o 1
B (Ka) + 7 (m)n‘iT(an)

as(Ka,Kb)

F As s increases, and for Ka, Xb >> 1 the approximations for the
Bessel and Hankel functions leading to equation (8) give for (21) )
the following asymptotic form:

as(a,b) ~

‘ 2.2t . —L-, 2t.2t
1 (§%% + B
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where the right-hand term in the denominator contains the
coupling effect. From this last expression it 1is a;parent, since
b 1s always greater than or equal to a, that the two cylinders
influence each other to s decreasing extent as the mode index s
increases. This behavior 1s most strikingly demonstrated by the
graphical plots of|a!fas a functien of spacing for K = 2.0
and 3.0 shown in Figs., 7 and 8, Here the complete expression
for a, given in (21) was used in the computations. In addition,
: s the corresponding quantity for an isolated cylindeg is
plotted along with I“sl for comparison. It is seen that the
coefficient Qq approaches the corresponding a: for the isolated
cylinder in an osecillating manner and for the higher modes (fer
exampley s = 3,4,5 and Ka = 3,0 in Fig. 8) the relative amplitude
of these oscillations is small. In addition, these oscillations
ddmp rather slowly with increasing separation between the cylinders,
indicating qualitatively at least that mutual effects tend to
diminish rather slowly with increasing separation, although the
complexity of the expression (20) relating the coefficients a,
to the scattered field makes it difficult to predict solely on
the basis of a graphical picture of the aq how the total field
will depend on spacing and radius,

Te compare the predictions of the fdiagonal® approximation
te measurable field quantities equation (20) has been used to
calculate the scattered field., Feor large separation between
source and cylinders the following representation* is used for

the Hankel function Hgl) (Kdgz + bz) in equatien (20)

1(Ku- &2 - I)
HH (Ku)~ 458 o 2 4 [sgl)(xu) + o(ﬂ;)p] (22)

where u -\/rg + b2 *nd

-1
1 ) S(l)(Ku) - (-llmr(sm+ é)
: S = (24Ku)® m? rﬁ(s~m*§;

‘h ------




TR170 =34~

Since Kr >>s and K = %'—7,' equation (20) for the scattered
field reduces to

-l
¥ Scatt o _ e~in/a /X o 1KY;§+b

114

A ro+b

’ 7 Héé is(bn-ol)
e ° a(Ks,z0)s 1 ke, K0) (K V2462 )R{VMR e |
n []

The incident field at x = x, y = 0 1s
-in/4 1K(r_+x)
*inc(x,o) = Ln_|/r—'é§ e ° Sél)(x(r°+x))
o

and for x(ro+x):>:>1;sgl),» l. The total field can now be cal=
culated using the definition

*tot = N 4 ,‘,scatt

DPividing this expression by the incident field at the reference
point x = x, y = 0 gives for the normalized field

1Kfr§+b2-ix(ro+x)

¥ tOt(x‘,y) = E, Py x.
norm
— is(ﬁ -9 )
->— ‘ N T o3 (ka xb)sV(k Y222 )R (xR Yo "
n¥fl 8= S S - " (23)

Thils formula has been used in calculating the theoretical results
labeled, diagonal terms only, in Fig. 6 of this section and Figs,
16, 19, through 21 of Section 5. In these results Kb has been
fixed and Ka allowed to vary (from 0.0783 to 3.0) and vice versa,
(2b varying from 1 to 8 wavelengths).

fect of Line-=Sour tat

The use of a 1ine source for the primary excitatiorn shows
up in two places in the general theoretical formulation ex-

e e T




am Y SOy eSS - - ..“.‘,f;w‘un: . ~- ., X o - o — - - - -

TR170 =35~

emplified in the matrix eguation of Fig. 6. PFirstl as an
amnlitude end phase factor in the term Hgl)(l( ,/roz + b2) on the
right-hand side of the matrix equation., The general behavior
of this term may be studied through the representation of the
Hankel function stated in (22), In addition the general re-
currence formula* ]

8(3)(z) = a2 Bgl)(z) -

s+l
may be used to give the relation

S T

Hs«l(z)

s{1(z) = 2 1 5{1(z) +5{(a) (24)

valid for z»>1, In particular Sél)(z) and Sl(l)(z).v 1,

The use of these relations in (22) shows that for small t

1(K \/rg + b2 - ns/2 -n/a)

Hgl)(x \/l'—f"’bz) %ﬁrj e 4
- ) f Ty b ﬂ

. This expressio tains the familiar cylindrical wave amplitude
' faztor LA[KZ;r%+b§)] which reduces the amplitude of excitation on
\ each cylinder as the spacing increases. In addition there is a

i phase retardation factor eiK r°+b2° Both of these factors are 1
mEore or less nt of the order t. As t becomes large the

F factor 23/( YKV r<+b“], appearing in the expression (24) for
i sgii(x Ty +b“) increases in importance. However the occurrence

of this increasing factor causes little effect on the field "
because it is multiplied by ag (Ka,Kb) in the summation for the P
scattered field and thus the product aqy(Ka Kb)S(l}(K’Vr“+b‘ tends ‘
to zero with increasing s. 1In addition to the ractors on the right
of the matrix equation which are approximately independent of order
there are two phase factors which depend linearly on the order.

. One comes from Etl)(K‘Vrzﬂaz)9 and the other is e=1%fp, Using
the asymptotic epansion for the Hankel function they may be
combined into the one factor

- e, o - e e

See General Bibliography, Watson's "Bessel Functions," p. 74,
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n
. Hi(z - 8;)
For @, small, that 1s, the separation between cylinders small

compared to their distance from the source, the contribu*ion

of the factor e it 91 is negligible for small t. 7The factor

e Yitm/2 is the same phase factor that occur for plane wave ex-
citation and hence is of 1little interest here. The effect of
all these excitation factors on the total field may best be
summarized by reference to equation (23). For convenience take
the point of observation to lie along the direction of incidence
so that g, = - ¢_1§ and of course & = -6_.. Thus (23) simpli-

fies to
r tx iKVr§+b§-1K(ro+x),
B.=1-2 e
¢ T°+b

s
; Ege 2 as(Ka,Kb)Sgl)(KVr§+b2) x

8=0

Hél)(xnl)cos s(ﬁl-el)-

-in/4
In the far zone.Hgl)(xnl) N Salady S < N i"s/zsgl)(xnl)

n Rl
and ;Sl ~ 0.

Therefore
][ 2,42
E ~v 1l -7 e R
2 v rgtb L
cylindrical
wave

[0 2)
E e 2 (Ka,Kkb)s M) (K¥r2+p%)8 1) (kr, dcos s0; (25)

S=0

The corresponding expression for plane-wave excitation 1s
cbtained by allowing b to approach infin:ty, thus

PO NURSORIISS YRS

i

. P
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-in/4 -1Kx + 1KR i
2e 1/% 1 (1)
E, ~l - S R e ega,(Ka,Kb)S ~“ (KR, )

" s=0
plane
wave
Comparison of these two expressions shows that for the point
of observation on the side of the cyiinders away from the
source the scattered wave in the line source case is modified
by the amplitude factors

‘r 3 X :
\/—2—— and s(;‘)(ergﬂsz)cos 8y . ]
Vr§+b2 1

For 91 (1.e. r,>> b) the only significant difference in

amplitude for cylinders of moderate diameters is due to the }
factorit;:f which for the cases computed and plotted graph- ' 
icaily ' © in this chapter and the next, results at most #
in about 3 per cent increase in amplitude of the (relative) scat-
tered field above the rorresponding amplitude for the plane-wave
case. Expanding ro+b in a binomial series for h2<:< r§ and
keeping only the first two terms gives

2432
o
Hence for b2<=< T, there 1s only a slight retardation in the
phase of the scattered field for the line source compared to
the same field for plane-wave excitation. However, for b as
large as 4 wavelengths and ro=37°7 wavelengths (corresponding
to an actual experimental condition) the phase retardation is
as large as 88.2 degrees and must be taken into account in
the compytation.

- 2 4.{
eiK r-+b iKro NeiKb /21'0+ e o o e

In the experimental measurements designed to check the re-~
sults of the thecry, the separation of source and cylinders has
been kept constant at 37.7 wavelengths,
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2.  Heasurements of the Field Scattered by Two Identical

onducting Cylinders or Ko 1 dence

| The parallel-plate region and associated field-probing
equipment described in Technical Report 1953 have been used
in a series of measurements of the field scattersd by two
identical highly conducting cylinders with a uniform line

J source for the primary excitation (at normal incidence) as
E sketched in Fig. 5.
l
k

These measurements are designed as a check on the validity
of the approximations made in the theory developed in the pre-
ceding section; and to compare the predi~tions of the indepen-
dent scattering hypothesis with the fields actually measured.

Chariges in Equipment.

¥ No changes have been made in the field-probing equipment .
: as described in Technical Report Fo. 153. However, two minor
i changes were made in the arrangement of the source; and a set
[ of retractable positioning pins (which also serve as the smaller
diameter scattering cylinders) and a moveable spacing bar were
L added to the probe»pane} assemtly.

4 In order to obtain a smoother amplitude distribution of
f the incident field along the line of probe travel the flanges
on the waveguide horn-radiator were removed. This largely 1
eliminated fluctuation in the incident field along the line of

T probe travel due to diffraction effacts cuased by the finite
ﬂ aperture of the horn. The previous difficulty with the use {
ﬁ of an unflanged guide as a radiator was the fluctuation in the )
i probe signal strength whenever the parallel piates were opened
and closed again., Tnis fluctuation has been removed by coating .

i the top and bottom surfaces of the guide with a very slow drying
| silver paint which tends to maintain uniformly good electrical
E contact between the waveguide and parallel plates whenever the

—_—
PRI —ry~ gl - oS3
' .
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the edge of the plates near the wavsguide have been kept at

least 2 wavelengths from the open end of the guide, so that

small changes in their position with opening and closing of the
plates now causes negligible changes in the incident field meas-
ured at the probe. This radiating system has a measured phase
center at approximately 39.7 wavelengths from the mid-point of
the probe travel at the operating wavelength of 3.185 cm. In
addition the 3-cm oscillator has been moved much closer to the
open end of the radiating guide. This results in a shorter elec-
trical transmission path from the oscillator to the phase refer- =
ence line and field probe, thereby improving considerably the :
reproiucibility of phase measurements.

TR170 =39~
plates are opened and closed again. The absorbing wedges at

To permit quick and accurate positioning of the scattering

. cylinders in the parallel-plate region a retractable set of 1/8-
inch diameter Dural pins has been added to the probe panel _
. assembly. These pins are spaced along a line parallel to the ﬂ
1

probe travel line and two wavelerngths (wavelength = 3.185 cm.)

from it on the side towards the source. They protrude into the
parallel-plate region as shown in Fig. 10 and allow the scatter- S
ing cylinders and/or spacing bar with a corresponding 1/8-inch :
diameter hole to be fitted over them. The pins are spaced 1/2 L'
wavelength between centers with the first pin located on the

line joining the phase center of the horn to the mid-position

of the probe travel. Bach 1/8-inch diameter pin is drilled 1
along its axis to take a 1/32-inch diameter coin silver wire, ?h
which may also be pushed up into the parallel-plate region. 3%

The 1/32=-inch diameter wire and 1/8-inch diameter pin thus

serve as scattering cylinders with Ka = 0.0783 and 0.313 re-
spectively. The probe panel assembly complete with the posi-
tioning pins is shown in Pig. 11. g 5

adols 2 o

To permit cylinder spacings at other than 1/2 wavelength
steps a series of spacing bars were constructed. They consist
simply of a 10-inch long rectangular bar of Dural, 1/2 x 3/8

-
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inch in cross section, with a brass sleeve which fits over any
of the 1/8-inch diameter positioning pins. At convenient posi-
tions along its length 1/8=inch diameter holes may be drilled
and fitted with easily removeable brass pins. The brass pins
are used to locate the scattering cylinders on the spacing bar
and the whole assembly is then inserted into the parallel plate
region, the sleeve being inserted over one of the positioningpins.
Pigure 12 - shows a sketch of a particular spacing bar used in
this way. After the scattering cylinders have been located the
spacing bar 1s removed and the positioning pin pushed down till
its end is flush with the surface of the lower plate., The upper
plate may now be lowered into position on top of the cylinders.

Scatteri Cylinder d erimental Tec

Each cylinder used wsas made from brass turned to the
correct diameter and 0.500 + 0.005 inches thick. A 1/8-inch
dlameter hole was drilled through the center to allow easy and
accurate location of the cylinder on the system of positioning
pins just described. To insure good electrical contact with the
parallel plates, the top and bottom surfaces of the cylinder were
lightly costed with the slow drying silver paint.

The results to be presented showing the total electric
field as a superposition of the field scattered independently
by each cylinder are determined in accordance with the inde-
pendent scattering hypothesis. Thus, 1f Einc(r) 1s the incident
electric field at a point T and EZOt(r) is the total electric

field with cylinder 1 in place, then ESC2'%(T) = g 'o¥(T) glne(s).

Similarly if cylinder 1 is removed and cylinder -1 = 1s put in

place 0 Y
E:C&tt(r) = EZOt(-;) - EinC(r) .
-1 z

According to the independent scattering hypothesis the total
field with both cylinders in place 1s given by
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tot, = . pinc,> scatt scatt
E, (r) E; (r) + E, + Ez_1

= B2 ®) + BT - BT
1 1

The results labeled "independent scattering' in the following
graphs were calculated from the formula immediately above,
following a measurement of the amplitude and phase of the in-
cident and total fields as outlined in the preceding procedure.

Measurements.

Amplitude measurements are reproducible to closer than 2
percent in all cases and in some cases where the signal 1is
relatively large, the results may be reproduced to within 1
per cent as 1n Figs. 15 and 16 and Fig. 18 through Pig. 22 where
the probe position was kept fixed. Phase measurements are un-
certain to within about + 2 degrees and reproduclble to about
the same degree.

The measurements made may be separated into two classes.
Those where the cylinder spacing and radius are fixed and the
probe moves along the line parallel to and 2 wavelengths from
(on the side away from the source) the line joining the centers
of the cylinders, and those where the probe is fixed and the
cylinder spacing and radius are allowed to change. The first
type of measurement gives a curve of the actual diffraction
field in the near zone and serves as an overall comparison
between theory and experiment. Figures 13 - 16 show the rela-
tive amplitude of the total field as a result of such measure-
ments with cylinders one wavelength between centers, and radil
corresponding to Ka = 0.0783, 0.313, 1.253 and 2.000. A spacing
of one vavelength was chosen to permit sizable coupling between
cylinders about a wavelength in diameter and still have the
radius small enough to require the solution of the matrix equa-
tion of Pig. 6 for only half a dozen mode coefficients. For the
two smaller cylinders no graphical results are presented for the
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independent scattering hypothesis. The reproducibility of
phase and amplitude measurements introduces relatively larger
uncertainties in the calculation of the independent scattered
field for small cylinders because the total field and incident
field are more nearly eaqual than for the larger scatterers which
cause greater differences between the incident and scattered
fields. In general this first type of measurement requires a
relatively large amount of labor for a relatively small amount
of information gained about the effects of spacing and radius
on coupling betveen the cylinders. 1In addition, a large amount
of computing is necessarily to calculate such a curve from the
theory, since each point on the graph requires summing a series
of six or more complex terms.

The second type of measurement affords a simpler experi-
mental study of the importance of spacing and radius on coupling
effects and in addition reduces the smount of computing necessary
in the theory. PFor this type of measurement the probe was fixed
at a point equidistant from the center of the two cylinders and
two wavelengths from the line joining them, on the side away
from the source, and the spacing and radius were varied. Figures
17 through 21 show the amplitude of the total field at this point
as a function of spacing; for spacings from one to eight wave-
lengths and radii corresponding to Ka = 0,313, 1.253, 1.50, 2.0
and 3.0, Figures 9 and 22 show the same quantity as a function
of radius for Ka ranging from 0.0783 to 3.0 for spacings of 1.0
and 2.024 wavelength.

6, Conclusions

Comparison of Measurements with Theory

Numerical results have been computed from the formulae
discussed in Sections 4,5, and 6, and are plotted along with
the appropriate experimental results mentioned in Section 5.

A study of Fig. 9 and Pigs. 19. through 22 shows that over
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a fairly large range of radii and spacings the independent
scattering hypothesis may be used to predict large-scale trends
in the results, both for ¢iffraction pattern measurements and
for those results where the probe was fixed and spacing and
radius allowed to vary. Thus for the probe fixed and a constant
spacing of 1.0 wavelength between centers (see Fig. 9) the

trend in the measured field as the radius increases 1is closely
predicted by the independent scattering hypothesis for ka ranging
from zoro to about 1.5. When the spacing is increased to 3.024
wavelengths (see Fig. 22) the independent scattering hypothesis
gives a fiarly good prediction of the trend for ka as large 2.5,
This simple assumption also predicts the over-all shape of the
results in the cases where the probe is fixed, the radius 1is
constant and the spacing allowed to vary from 1.0 to 8,0 wave-
lengths (see Figs 17 through 21).

In all the measurements referred to above there 1is practi-
cally no detailed agreement between the measurements and the
results of the simple independent scattering hypothesis, even
for ka as small as 0.0783 and a spacing of 3.024 wavelengths
(see Fig. 22). The diffraction patterns in Pig. 15 and Pig. 16
show this same lack of detailed agreement. For example, the
diffraction pattern (see Fig. 15) in which the cylinders are
gspaced 1.0 wavelength between centers with ka equal to 1.253
shows a maximum difference of approximately 50 percent between
the measured and independent scattering results at the first
minimum in pattern. Succeeding measured coupled and independent
(scattering) minima and maxima are slightly shifted from one
another and show amplitude differences of approximately 4 to
8 per cent. For the same spacing and ka equal 2.0 (see Pig. 16)
there is a pronounced shift in pattern and greater differences
in the amplitude of corresponding maxima and minima than in
the case with ka equal to 1.253. All the data taken show in
general, as might be expected, that the larger the radius and
smaller the spacing the poorer becomes the detailed agreement

Atas
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between the predictions of the simple independent scattering
hypothesis and the ccrresponding measurements. These measure-
ments clearly indicate the need of a better theory to predict
the detailed nature of the results, so attention will now be
focussed on the specific results of the theory developed in
Sections 4,5 and 6.

Fer small cylinders, only the zeroth mode or uniform-
current mode 1s significant 1n calculating the scattered field.
The range of radii and spacings over which this mode alone 1is
sufficient is determined primarily by tne radius,* since this
parameter determines the number of modes required in the corre-
spondineg problem of diffraction by a single isolated cylinder.
Thus with a fixed probe and constant spacing of 1.0 wavelength
Fig. 9 shows that the uniform-current distribution gives excel-
lent agreement with experiment for ka less than approximately
0.3. 1Incidentally 1t is interesting to note that the approximate
shape of this entire experimental curve is reflected on a much
exaggerated scale in the curve calculated from the use of only
the zeroth mode. Thils mode 1s the one used by Wessels in his
analysis of the diffraction grating of small wires, and the
validity of his theory for a large rangz of spacings (including
smaller sracings than used here) has hean established by the
experiments of Esau, Ahrens and Kebbe.n..l9 The next step 1s to
keep all the modes required for the same accuracy in the problem
of diffraction by a single isolated cylinder. Due to the large
amount of computing required, the effect of solving a finite
number of equations for a fewer or greater number of modes has
not been throughly investigated. However, in one case, that for
ka equal to 1.253 with a spacing of 1.0 wavelength (see Pig. 15),
a finite system was solved keeping at first three modes. and then
four modes. Both cases lead to results in zbout equally close

»

For cylinders and spacings very much less thar a wavelength, the
rroblerm can be handled by the electrostatic approximation much
as Lamb22 treated the problem of a planar grating cf small wires.
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agreement with experiment. In all cases where the number of
modes solved for was the same as required by the single-cylinder
problem the detailed agreement between the theory and experiment
is excellent.

The diffraction patterns (see Figs. 15 and 16) calculated
(from the solutions to a finite number of linear equations) for
a spacing of 1.0 wavelength and ka equal to 1.253 ané 2.0 are
in excellent agreement with the corresponding measured patterns.
Likewise the points shown as triangles in Fig. 9 (showing the
amplitude of the electric field at a fixed point as the radii
of the cylinders are varied, with constant spacing) demcnstrate
the success of the theory developed in Section 4; where of course
only a finite number of modes have been considered in solving
the infinite matrix equation.

(e v i b s SNl i SRS s M ik i, P

» Without the use of large scale automatic calculating machinery |
it would be impracticable to compute the solutions to the system
. of equaticns (17) for any appreciable range of radii and spacings.

Therefore the diagonal approximation introduced in Section 4

(pp. 29-34) has been used to compute the total field at a point
equidistant from each cylinder and two wavelengths behind the
line joining their centers, using formula(21) for 2b/A equal to
1.0 and 3.024, and ka ranging from 0.0783 to 3.0 (Figs. 9 and 22);
and for ka equal to 1.5, 2.0 and 3.0 and 2b/N ranging from 1.0

to 4.0 (Pigs. 19, 20 and 2i). The corresponding experimental
curves show significant coupling effects for spacing considerably
greater than 4.0 wavelengths. However,'convenient tables of the
Neumann functions !o(z) and Yl(z) are not available for z greater
than 25.0 (corresponding to a maximum probe cylinder separatioa
equivaient to a spacing of 4.0 wavelengths), and the most inter-
esting coupling 2ffects for all the cylinders measured occur for
spacings less than four wavelangths.

From these results it is apparent that the diagonal approxi- 1
mation yilelds a satisfactory approximation to the shape of the
experimental curves, even for the largest cylinders studied

o
e o
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(ka equal to 3.0; a diameter of one wavelength corresponds to :

ka equal to n). PFor cylinders with ka less than approximately

1.5 the detalled point-by—point agreement between the theory

and measuremenis is good and becomes petter as ine size ol cthe

cylinders decreases. In the curves taken with the radius constant

there is a progressive shift in the peaks and valleys of the

' theoretical curves towards smaller spacings as the radius is
increased, and for ka equal to 3.0 the first dip in the experi-

‘ mental curve 1s absent in the theory. These effectr indicate

I

T

B

the increasing need for considering interactions between modes

of different order in the theory; that is, the mode coefficients
must be obtained as the solutions to a2 'block'! from the matrix ‘
equation represented in Fig. 6. !

The chief valve of the 'diagonal' theory, then,is its useful- 1
ness in predicting the detailed shape of the experimental curves
and showing that significant coupling effects do exist, and frox ‘
the measurements it appears to give fairly good predictions of s
’ the location and magnitude of these effects for cylinders as large
' as a wavelength in diameter and spacings as little as a wave-
length. The measurements also indicate that, with cylinders of
; diameter comparable to a wavelength, detailed point by point
; agreement between the diagonal theory and the measurements does ' 8
% not exist for spacings less than 4.0 wavelengths. What the
: spacing must be before a given degree of quantitative agreement
is reached, has not been determined. However, it appears that {
most of the interesting coupling effects occur within the range
of spacings for which computations were made.

General Conclusiong. 1
|
|

| The problem of the diffraction of a cylindrical wave by '

! two ldentical conducting cylinders while not of great intrinsic

E physical interest in itself has served as a useful application .

| of the very general theory developed in Section 3.—useful

particularly in that it has allowed a comparison between the

results of various approximations in the theory and measure- !
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rments carried out on an actual physical arrangement of source

and obstacles very closely approximating the conditions assumed
in the theory. One approximation, the diagonal approximation;
has proved very useful in predicting the shape of the experi-
mentally measured curves for diameter and spacings comparable
with a wavelength, where interesting and large coupling effects
are found to exist. The diagonal approximation results in formulae
not too difficult to compute which represents a great advantage,
considering the labor required to solve a complete block from the
matrix equation. The electric fleld amplitude as measured in

the experiments is not of general physical interest as would be
the scattering cross section or field-pattern. However, these
quantities can be readily calculated once the mode coefficients
are known, and the near-zone measurements served their purpose

in conjunction with the theory.

The success of the dlagonal approximation in the two-cylinder
problem points encouragingly to the usefulness of the general "
method of analysis in handling the problem of the planar diffrac-
tion-grating (mentioned briefly in Section 3 ) of wires with
dlameter and spacing comparable tu a wavelength. The same method
of analysis and a similar diagonal approximaticn might prove
fruitful in handling the problem of diffraction of a plane wave
by a periodic array of spheres. Of course, the general method
of analysis could be profitably extended to similar configurations
lacking simplifying symmetry by the use of madern automatic
computing machinery to solve the resulting systems of linear
equations.

Due to the limitations of the experimental equipment, the
theory has been formulated only for the case of the incident
electric~-vector parallel to the axes of the cylinders. However,
the extension of the analysis to the other polarization should
be straightforward.
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Appendix A : %
RVALUATION OF THE INTEGRALS tm AND Ktmns o
|
With reference to Fig. 1 of Sectior 3 }
]
o =]/;E + ag - 2rmamcos(9m +m - ﬁm) . ;
on mth cylinder i
and 5 5 b
! T ='l/o + by +2r, by cos(eo -a ) . |

om 1

Using the addition theorem* for cylinder functions

10(e_+n-g _)
%fl)(Kr) = J((Kam)Hél)(Krm)e n* P
e )
then |
e _ 2n i) 1f(e +m)-1fg -1tg !
Yem = A i JQ(Kam)He (Krp)e ag, . ll
{ )

| where interchanging the order of summation and integraticn is
assumed to be valid. The orthogonality relations for the |

trigonomnetric functions enable *¥m to be evaluated explicitly, {
; hence (1) _1t(9mf") |
It should be noted that for cylinders with centers zbove the
line A-B in PFig. 1, Om is to be taken as positive and for those 't
with centers below A-B it is negative. i}

The computation of Ktr“~ must prcceed in two steps. The :

A4

first case is that in which the indices m and n are equal,

corresponding to r and r' lying on the surface of the same cylin-
4q
der . . ;

- - - - - e o

*
See Watson, "Theory of Bessel Functions " 2nd edition, MacMillan
and Co., 1948, pp. 361.
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With reference to Pig. A-l for the case n = m
T -7 = a V1 - cos(g-g})

Using the above addition theorem for the cylinder functions gives

us
21
isgi-1itg 10(g_-p')
KWS:B%ZZF [ o TP raryVixag)e " " agyas

= %l Jt(Kam)Ht(:l)(Kam)Sst

oS G SR B el b AU 5o b 1 Nl 2 3 Lp ¥ N

. - S . e s

where
1 for s=t

5 =
st o ror sft

Turning now to the evaluation of K .. when n#m. From FPig. B-1
. it may be seen that

. ..s-..s = 2 2- . i
Ir r'| Vsnm +a anman cos(m + am bn + Bnm)

Again applying the same addition theorem

an
1sp _~1tg 1(ma_~g -8 )
Ktmns = B%?Z:I Z e o 0 3 (kam)Hél)(Ksnm)e nm “n “nf afas,

carrying out the ¢n integration we get I

1 A -1tey 1) 1s(mba  +8 )
Kemns = 4'~L e Js(xan)Hs (Ksnm)e dbm 5 “
Both Shm and Bnm are dependent on ¢m so that in order to perform
the remaining integration the more general addition theorem* 1
(o)
ispB N iq(a_ =g )
(1) nm _ (1) % nm™~Pm
Hy ' (Ks_)e T (Rap)Bgyo (K By=b | de
=-00
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must be used whence it may readily be shown that

-ita + 1isg B

{ Kemns = -g—i J.(Ka )J (Ka )H(l)(K|b Y |)e _e i
| Summarizing
~it(o_+m)

} Yem = ZWAJt(Kam)Hgl)(Krm)e .
| Hél)(Kam) b5t aAa=m

_ni 9
‘ Kimns = 5_'Jt(Kam)ﬁ
; - _‘ mitanm+isanm
| RAL b | )e , nFm
|
|
| Appendix B )

NUMERICAL SOLUTION OF THE MATRIX EQUATICN K . a = 4iA

Two methods of numerical solution have been used to solve
a finite block from the infinite matrix equation for the spacing
2b/N = 1.0, and Ka = 1.253, 2.0 and 2.5.

The first method known as Crout's method*® is especially
well adapted to the solution of linear systems on a modernm
desk calculating machine and gives solutions to the same
accuracy as the coefficients in the original system. The
method will be described briefly so that an estimate can
he made of the number of operations involved in the solution.
The original matrix relation is written in the form

B, e~ = B B AR

- e e e e e e

*
See P, D. Crout, "A Short Method for Evaluating Determinants and
Solving cystems of Linear Equations with real or Complex Coeffi-

clents, "Transactions of the American Institute of Electrical
Englneers _60, 1941,
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n
all 8.12 813 - L] L[] L[] o o aln = yl
a,)l 822 o ] L) . L] L) . L) . [ Ld azn = y2
a a a a =Y
31 32 33 3n 3
. anl an2 e o o ¢ a o © o e o o ann = Yn
. From this an auxiliary matrix B
bll b12 L] ® L L] ® L] L] L] L] L ] L] bln bl ’n+1
| ® ,
b21 b22 L L] L] . L] . L] L] L] L] L] b2n b2’n+1
b31 <:> b32 b33 ST e b3n' b3,n+1
: l
[d ‘Vbnl !{bn2 . . . ° . . . 3 . ° bnn bn’ n+1
< is formed and finally the solution
1 1 *
xl L L] o L] L] o L] L L ] ’ ‘0 [ % an n+1 1
i1s obtained. The rules for determining the auxiliary and final
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matrix are as followss:

Auxiliary Matrix.

1) Elements in the first coclumn equal corresponding
elements in the original matrix.

11) Elements in the first row equal corresponding
elements in the first row of the original matrix divided by
the diagonal element of the same row in the auxiliary matrix.

1iii) All elements below the principal diagonal are formed
by subtracting from the corresponding element in the original
matrix the sum of products of the elements previously calculated
in the same row and column of the auxiliary matrix. Thus

iv) Elements to the right of the principal diagonal are
formed as in i1ii) except that the result of this calculation
is divided by the previously computed diagonal element in the
same row of the auxiliary matrix. The numbered arrows indicate
the order of operations in the forming of the auxiliary matrix.

Final Matrix. (crder of calculation important)

1) *n - bn,n+1
*n-1 T bn-l,n+l = P1n*n
*n-2 T bn-2,n+1 = (bypXp ¥ bl,n-lxn~1)
’ at+l
1 TPy ” 1,s%s
9 9
s,1

9

The advantages of this method are that each step in the rules
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requires only one machine operation and that a check column may

be readily carried along, as a check on each row of the auxillary
matrix. A study of the number of machine operations shows that

in forring the auxilisary matrix the tth row reguires t(n-t) oper-
ations, nnd the gth column requires (t-1)(n-t+l) operations where

n is the number of unknowns. In addition there are n2 ~ n original
entries in the machine. Hence the total number of machine operations
in setting up the auxiliary matrix is

n2 -n + {t(n-t) + (t-l)(n-t+1)}

-

§(n2 +13n -5)

In adcition there are g&géll operations in the final matrix.

Hence there a total of %(n2+9n-13) operations in tne solution.

Thus for ka = 2.0, the mode coefficients a195 - LT R
215 must be calculated. This means that there are 11 complex
unknowns or equivalently 22 real unknowns requiring 4906 machine
operaticns if no errérs are made. Carrying a check column which

is a recessity when there are so many variables requires another
n(n+2) operations for a total of 5634 operations.

The other method of solution is the Gauss-Seidel iteration
procedure* based on a least-squares approximation to the true
solution. The process can be shown to coverge in general. Con-
sider the linear system

) a21X1 + a22x2 A . a2nxn = C2
anlﬁ + ® [ ] L] L] L] * [ ] L) ° * [ [] annxn = Cn

*See Whittaker and Robinson, Calculus of Observaticns, Blackie
and Sons, London, 4th editlon, p. 255.
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As a first guess at the solution try

x(O) = Cl 9 X(O) = —Sg o o o o ¢ e x(O) = _Erl
1 811 2 855 i n an
then form
2 (0) (0) | (0)
Nl allxl + al2x2 hd ° © Q ° ° ° ° ° alnxn = Cl
and (0) N (1) _ _(0) , ,.(0)
0) _ 1 1) _ (0 0
Axl S 5 X4 X1 + Axo
11
Similarly
- (1) (0) (0) _
N2 821X1 + 822X2 + * o ° °a2nxn C2
N
(0) _ 2 (1) - ,(0) (0)
bXy " = = ;E; s and x, X5 "t ox, .

\
and so on,till all values x§1)9 xél), x(l) R .xgl’ have

been calculated. Then repeat this process over to obtain
x{g), xé‘) . « o » etc. As in every true iteration process,
errors made in the calculations are automatically compensated for.
(0) x(o) .x(o) requires n
2 (1)

The computation of X
divisions and the suczeeding processes to obtain x
etc. require n+2 operations for a total of nlze;ogk

o e & (1
9x2 )o o o,
+

-g%der solution

operations in the first iteration. If N iterations are carried
through, the total number of operations is

n + Nn(n+2) o

Thus for Ka = 2.0 1t was found that 4 iterations were necessary
to meduce the changes in the unknowns with further iterzticn to
less than 1 percent. Thus the total number of machine operations
would be 2134.

It is apparent then that at least 1 percent accuracy in the
final solutions may be obtaireé by the iteration <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>